

Lasha Abzianidze

university of groningen

Reinhard Muskens

ESSLLI 2019 in Rīga, Latvija

Logic & proof systems

Logic consists of four components:

- Intuitive non-formal motivation
- Syntax of formulas: well-formed formulas vs ill-formed ones
- Semantics associated with the formulas
- Some type of proof calculus

A proof calculus/system:

- employed to systematically capture valid formulas and arguments
- is a syntactic game: there are legal and illegal moves
- comes in several flavours
- is usually a sound and complete

Semantic tableau method

Introduction

A semantic tableau method [Beth, 1955, Hintikka, 1955] is a proof procedure for formal logics that checks formulas with truth constraints:

Input: A set of signed formulas

 $P_1: \mathbb{T}, \dots, P_m: \mathbb{T}, Q_1: \mathbb{F}, \dots, Q_n: \mathbb{F}$

Output: some or no model satisfying the truth constraints on the

formulas

A model search problem

Prove or refute

Introduction

Whenever it rains, the roof leaks

How to verify truth of this statement?

Show that:

Approval route

- In every situation it is true Check every situation when it rains and show the roof leaking
- In some situation it is not true Refutation route Find some situation when it rains and the roof isn't leaking

Proving by failing to refute

Introduction

A tableau method tries to refute statement in order to prove it:

- Given $P_1, ..., P_m \models Q$ to prove
- 2 Try to refute $P_1,...,P_m \models Q$
 - **1** Build the counterexample: $P_1: \mathbb{T}, \ldots, P_m: \mathbb{T}, Q: \mathbb{F}$
 - Try to satisfy the counterexample
- **3** If refutation succeeded, $P_1, ..., P_m \models Q$ is disproved
- **4** Otherwise $P_1, ..., P_m \models Q$ is proved

Propositional tableau method (signed version)

Prove: $P \land Q \models Q \land \neg P$

 $\neg P\!:\! \mathbb{F}$

Propositional tableau rules:

$$X \land Y : \mathbb{F}$$
 $X : \mathbb{F} \quad Y : \mathbb{F}$

A situation supporting a counterexample: $P: \mathbb{T}, Q: \mathbb{T}$

Closed tableau

Prove: $\neg (P \land Q) \models \neg P \lor \neg Q$ Proved!

Counterexample: $\neg (P \land Q) : \mathbb{T}, \neg P \lor \neg Q : \mathbb{F}$

Propositional tableau rules:

$$\begin{array}{c|c} & & \\ \hline X \land Y \colon \mathbb{F} \\ \hline X \colon \mathbb{F} & & Y \colon \mathbb{F} \end{array}$$

$$\neg \mathbb{T}$$

$$\neg X : \mathbb{T}$$

$$X : \mathbb{F}$$

1 ¬(1	$P \wedge Q) : \mathbb{T}$
$2 \neg P$	'∨¬Q: F
¬ _T [1]	I
3 <i>P</i>	'∧ Q: F
V _F [2]	1
4	¬ <i>P</i> : ₣
5	¬Q: F
¬ _F [4]	I
	$P:\mathbb{T}$
¬ _F [5]	
	Q : T
^ _[3]	
8 <i>P</i> : F	9 Q:F
×[6,8]	×[7,9]
10 ×	11 ×

Different proof strategy

Prove: $\neg (P \land Q) \vDash \neg P \lor \neg Q$ Prover! Counterexample: $\neg (P \land Q) : \mathbb{T}, \neg P \lor \neg Q : \mathbb{F}$

Propositional tableau rules:

 $\neg (P \land Q) : \mathbb{T}$ 2 ¬*P*∨¬*Q*: **F** ¬_T[1] 3 *P*∧ *Q*: **F** ^F[3] 4 *P*: 𝔻 5 Q:F V_F[2] V_F[2] 6 | ¬P: F 10 ¬P: **F** 7 ¬Q: ₣ 11 ¬Q: ₣ ¬_[[6] ¬_F[10] 8 *P*: **T** 12 *P*: **T** ×[4,8] ¬F[11] 13 Q: **T** ×[5,13] 14 X

Tableau exercise

Quiz

- If propositional formula ϕ is built up from n Boolean connectives, at most how many rule applications will be applicable to the tableau started with $\phi: \mathbb{T}$?
- **2** ... started with ϕ : \mathbb{F} ?
- **3** Can you think of tableau rules for $\rightarrow_{\mathbb{T}}$ and $\rightarrow_{\mathbb{F}}$?

Rules for 3:

Rules for ∀:

Non-empty domain

Rules for 3:

Non-empty domain constraint: you can always have an entity

Rules for ∀:

We will use Simple Type Theory [Church, 1940] as a Higher-Order Logic.

A type system built up from e (entity) and t (truth) basic types:

- e and t are types;
- if α and β are types, so are $(\alpha\beta)$

Examples of types:

- *t* for sentences, e.g., *John sleeps*
- et for common nouns and intransitive verbs, e.g., sleep, cat
- (et)(et)t for determiners
- (et)(et) for adjectives
- eet for transitive verbs
- e for proper names (also (et)t is possible)

We assume to have infinite number of constant and variable terms of each type.

Compound terms are combined and typed as:

- if B is of type $(\alpha \beta)$, and A is of type α , then BA is of type β .
- if variable x is of type α , and B is of type β , then $\lambda x.B$ is of type $(\alpha\beta)$.

Association conventions:

- \bullet ABC = (AB)C
- $(\alpha \beta \gamma) = \alpha(\beta \gamma)$, e.g., (et)(et) = (et)et

Types for numbers:

Introduction

- Basic types $\mathbb N$ for natural numbers and $\mathbb R$ for real numbers.
- Compound types: NR, NNN, RRR, RR, NN, RN, ...

Typed terms:

- Constants: 1_N , 3.1415_R , 1_R , $+_{NNN}$, \times_{NNN} , $\sqrt{}_{NR}$, ...
- Compound terms:

```
+_{\mathbb{N}\mathbb{N}}1_{\mathbb{N}} is of type \mathbb{N}\mathbb{N}, \sqrt{_{\mathbb{N}\mathbb{R}}}1_{\mathbb{N}} is of type \mathbb{N}\mathbb{N}, \times_{\mathbb{N}\mathbb{N}}1_{\mathbb{N}} is of type \mathbb{N}\mathbb{N}, \lambda_{\mathbb{X}\mathbb{R}}.1_{\mathbb{N}} is of type \mathbb{R}\mathbb{N}
```

Conclusion

- A semantic tableau method "today [it is] one of the most popular, since it appears to bring together the proof-theoretical and the semantical approaches to the presentation of a logical system and is also very intuitive. In many universities it is the style first taught to students." [D'Agostino et al., 1999].
- Propositional tableau system: when applying a rule to a tableau entry, remember to do so for each branch it sits on.
- Dangerous zone: First-order logic tableau might not terminate
- Simple type theory: typed terms model higher-order functions

References I

Beth, E. W. (1955). Semantic Entailment and Formal Derivability. Koninklijke Nederlandse Akademie van Wentenschappen, Proceedings of the Section of Sciences, 18:309–342.

Church, A. (1940). A formulation of the simple theory of types. *Jurnal of Symbolic Logic*, 5(2):56–68.

D'Agostino, M., Gabbay, D. M., Hähnle, R., and Posegga, J., editors (1999). Handbook of Tableau Methods. Springer.

Hintikka, J. (1955). Two Papers on Symbolic Logic: Form and Content in Quantification Theory and Reductions in the Theory of Types. Number 8 in Acta philosophica Fennica. Societas Philosophica.